LO1 Design of shear walls as vertical systems used to resist earthquake loads

College of Engineering

Course Work

Name of the programme

BEng (Hons)  Civil Engineering

Name of Module with Code

Design of Earthquake Resistant Structures (ECE20307)

Level/Semester & AY

Level 4 / Semester B 2022 – 2023

Coursework Type

Assignment [Module based mini project]

Assessment weightage

30%

Type and Date of Submission

Through Blackboard / 10.05.2023

Aim

To assess the knowledge and understanding of the analytical skills, critical thinking and software skills in the design and detailing of earthquake resistant multi storied building in Oman.

Learning Outcomes

On completion of this coursework the student shall be able to:

  • Design of shear walls as vertical systems used to resist earthquake loads.
  • Perform detailing requirements in seismic design.
  • Develop skills of structural modeling using software.

Task(s)

Course work - Assignment (100% Weightage)

Shear walls are vertical elements of the horizontal force resisting system. In structural engineering, a shear wall is a structural system to counter the effects of lateral load acting on a structure. Seismic loads are the most common load that shear walls are designed to carry.

Figure1 shows the plan of multi-story construction (G+5) for a school building project in Oman. It is required to examine the earthquake resistant of the multi-story construction with shear wall in two principle directions.

(i) Write a brief abstract about the project (seismic design with shear wall) highlighting the concept, materials used and the method of construction which includes soil condition, building importance and seismic zone.[Weightage: 10%]

(ii) Prepare a structural plan, elevation and distribution of shear wall in the plan with grid lines in the horizontal (x-direction) and vertical (Y-direction) including naming of the grids in alphabetical order horizontally (in x-direction from left to right) and by numerical numbers vertically (in y-direction from bottom to top) respectively which includes column showing the proposed shear walls scheme in the two principal directions of the building.

[Weightage: 15%]

(iii) Analyse and design one shear wall manually as per EC8 which includes load calculation, base shear, distribution of horizontal seismic force, direct force, real torsional force, accidental torsional force, total force, maximum bending moment at base, maximum shear force at base, axial load calculation, load combination, design of flexural reinforcement in DCL condition.

[Weightage: 35%]

(iv) Carry our modeling and design of shear walls with gravity and earthquake forces using software STAAD Pro / ETABS as per Euro Code 8.[Weightage: 25%]

(v) Reinforcement detailing: Provide all relevant reinforcement details of shear wall both longitudinal section and cross section.[Weightage: 10%]

(vi) Student participation in class. [Weightage: 5%]

Table 1 Batch 1

Sl.

No.

Student No.

Imposed Load (variable action) kN/m2

Floor Finish kN/m2

Type of elastic response spectra

Soil

profile

Characte ristic materials for concrete fck N/mm2

Floor Height GF

Floor Height Upper floors (above GF)

No. of spans in x - directio n

(n)

Span in x

-direction (meters)

No. of span s in y

-

direct

ion (m)

Span in y - direction (meters)

1.

170394

5.5

2.2

Type I

A

40

3.5

3.0

5

3.0

5

4.0

2.

NU180010

3.2

1.60

Type II

B

35

4.0

3.2

6

3.2

6

3.75

3.

NU 180021

3.4

1.2

Type I

D

40

3.5

3.0

5

3.0

5

3.0

4.

NU 180061

2.5

1.25

Type II

C

30

4.25

3.2

6

3.5

6

3.5

5.

NU 180104

4..0

2.2

Type I

A

40

3.5

3.0

5

3.0

5

4.0

6.

NU 180116

2.50

1.6

Type II

B

35

4.1

3.1

5

3.6

5

4.5

7.

NU 180144

3.50

1.5

Type I

D

35

3.5

3.2

6

3.1

5

3.0

8.

NU 180172

2.75

1.7

Type II

C

30

4.1

3.22

6

3.2

6

3.5

9.

NU 180189

4.15

2.10

Type I

A

40

3.5

3.0

5

3.3

5

4.0

10.

NU 180203

2.25

1.75

Type II

B

35

4.0

3.2

6

3.1

6

4.5

11.

NU 180521

3.25

1.25

Type I

D

40

3.5

3.0

5

3.15

5

3.0

12.

NU 190632

2.80

1.65

Type II

C

30

4.25

3.2

6

3.55

6

3.5

13.

NU 190634

4.30

2.12

Type I

A

40

3.5

3.0

5

3.0

5

4.0

14.

NUEN 180585

2.75

1.9

Type II

D

35

4.00

3.15

5

3.4

5

4.5

Table 1 Batch 2

Sl.

No.

Student No.

Impose d Load (variabl e action) kN/m2

Floor Finish kN/m2

Type of elastic response spectra

Soil

profile

Characte ristic materials for concrete fck N/mm2

Floor Height GF

Floor Height Upper floors (above GF)

No. of spans in x - directi on

(n)

Span in x - direction (meters)

No. of span s in y

-

direct ion

(m)

Span in y - direction (meters)

1.

170057

5.0

2.0

Type I

A

40

3.5

3.0

5

3.0

5

4.0

2.

NU180032

3.0

1.5

Type II

B

35

4.0

3.2

6

3.1

6

4.35

3.

NU180041

3.0

1.0

Type I

D

40

3.5

3.0

5

3.2

5

3.0

4.

NU180042

2.0

1.25

Type II

C

40

4.25

3.2

6

3.6

6

3.5

5.

NU180046

4.0

2.0

Type I

A

40

3.5

3.0

5

3.0

5

4.0

6.

NU180050

2.0

1.5

Type II

B

35

4.1

3.1

5

3.0

5

4.5

7.

NU180064

3.5

1.5

Type I

D

35

3.5

3.2

6

3.3

5

3.0

8.

NU180069

2.5

1.75

Type II

C

30

4.1

3.22

6

3.55

6

3.5

9.

NU180071

5.25

1.5

Type I

D

35

3.8

3.1

6

2.75

5

3.0

10.

NU180099

4.0

2.0

Type I

A

40

3.5

3.0

5

3.0

5

4.0

11.

NU180108

2.0

1.5

Type II

B

35

4.0

3.2

6

3.1

6

4.25

12.

NU180113

3.5

1.0

Type I

D

40

3.5

3.0

5

3.0

5

3.0

13.

NU180117

2.25

1.5

Type II

C

40

4.25

3.2

6

3.6

6

3.5

14.

NU180126

4.25

2.0

Type I

A

40

3.5

3.0

5

3.0

5

4.0

15.

NU180134

2.5

1.75

Type II

B

35

4.25

3.2

5

3.2

5

4.4

16.

NU180171

3.75

1.75

Type I

C

35

3.6

3.2

6

3.0

5

3.0

17.

NU180183

2.75

1.75

Type II

D

30

4.15

3.2

6

3.5

6

3.5

18.

NU180204

5.0

1.5

Type I

C

35

3.85

3.15

6

2.75

5

3.0

19.

NU180210

5.2

2.0

Type I

B

40

3.75

3.3

5

3.0

5

4.0

20.

NU180230

4.25

2.2

Type I

c

40

3.75

3.3

6

3.0

6

4.0

21.

NU180241

5.0

2.0

Type I

A

40

3.5

3.0

5

3.0

5

4.0

22.

NU180247

3.0

1.5

Type II

B

35

4.0

3.2

6

3.15

6

4.3

23.

NU180256

3.0

1.0

Type I

D

40

3.5

3.0

5

3.0

5

3.0

24.

NU180262

2.0

1.25

Type II

C

40

4.25

3.2

6

3.25

6

3.5

25.

NU180275

4.0

2.0

Type I

A

40

3.5

3.0

5

3.0

5

4.0

26.

NU180281

2.0

1.5

Type II

B

35

4.1

3.1

5

3.25

5

4.2

27.

NU180540

3.5

1.5

Type I

D

35

3.5

3.2

6

3.0

5

3.0

28.

NU190602

2.5

1.75

Type II

C

30

4.1

3.22

6

3.3

6

3.5

29.

NU190610

5.25

1.5

Type I

D

35

3.8

3.1

6

2.75

5

3.0

30.

NUEN180575

4.0

2.0

Type I

A

40

3.5

3.0

5

3.0

5

4.0

31.

NUEN180586

2.0

1.5

Type II

B

35

4.0

3.2

6

3.2

6

4.5

32

NU180137

2.75

1.9

Type II

D

35

4.00

3.15

5

3.4

5

4.5

Note: Assume slab thickness, beam size, wall thickness suitably and characteristic material strength for the steel reinforcement fyk = 500 N/mm2.

References:

R1 - Elghazouli, A., ed.,2009. Seismic Design of Buildings to Eurocode 8. 1st edition. CRC Press.

R2 - Fardis, M.N., Carvalho, E.C., Fajfar, P. & Pecker, A.,2015. Seismic Design of Concrete Buildings to Eurocode 8. CRC Press.

R3 - Earthquake Monitoring Center-SQU, 2013. Seismic Design Code for Buildings-Sultanate of Oman. Muscat, Sultan Qaboos University.

R4 - British Standards Institution, 1996. Euro code 8: design provisions for earthquake resistance of structures. London, British Standards Institution.

R5 - Lindeburg, M.R., & McMullin, K.M., 2014. Seismic Design of Reinforced Concrete Buildings, 11th edition, Professional Publications.

R6 - Taranath, B.S., 2004. Wind and Earthquake Resistant Buildings, 1st edition, CRC Press.

Ebrary:

E1- Huang, Maosong, Yu, Xiong (Bill), and Huang, Yu, eds. Soil Dynamics and Earthquake Engineering : Proceedings of the GeoShanghai 2010 International Conference, June 3-5, 2010, Shanghai, China, GSP No. 201. Reston, VA, USA: ASCE, 2010. Ebray [online] Available at http://site.ebrary.com/lib/caledonian/detail.action?docID=10475978, [accessed 27th June 2022].

E2- El-Tawil, S., 2009. Recommendations for Seismic Design of Hybrid Coupled Wall Systems, American Society of Civil Engineers, Reston, VA, USA. Ebray [online] Available at: http://site.ebrary.com/lib/caledonian/detail.action?docID=10435251, [accessed 27th June 2022].

Marking scheme:

31.Component

Description

Weightage (%)

i

Abstract

10%

ii

Structural plan with elevation drawing to a suitable scale

15%

iii

Design of one shear wall manually

35%

iv

Software analysis

25%

v

Reinforcement detailing

10%

vi

Student participation in online class

5%

Total

100

Instructions:

  1. Plagiarism is a serious offence. In case of any plagiarism detected, penalty will be imposed leading to zero mark. Policy and guidelines for dealing with plagiarism and malpractice in examination can be viewed by clicking: http://portal.cce.edu.om/member/contentdetails.aspx?id=490
  2. Course work should be submitted on time. College guidelines on late submission of coursework can be viewed by clicking: http://portal.cce.edu.om/member/contentdetails.aspx?id=565
  3. Name, student identification and title of the course work to be written clearly and legibly on the cover page.
  4. For online submission of course work, pdf file with appropriate cover page mentioning name of student, student number and title of the course work should be uploaded using the submission link created and made available by the module leader.

Referencing:

Harvard Referencing (CCE Style) First Edition 2013 should be followed for both in-text and listing references. This downloadable document can be found in our CCE portal at: http://portal.cce.edu.om/member/contentdetails.aspx?cid=628

100% Plagiarism Free & Custom Written, Tailored to your instructions